Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alan J. Lough, ${ }^{\text {a* }}$ Karine Villeneuve ${ }^{\text {b }}$ and William Tam ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.045$
$w R$ factor $=0.125$
Data-to-parameter ratio $=8.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Absolute configuration of the p-nitrobenzoate ester of the cycloadduct of (S)-4-hydroxy-2pentynoate and acetic acid 8 -acetoxy-1,4-dihydro-1,4-methanonapththalen-5-yl ester

The regio- and absolute stereochemistry of the title compound, ethyl 3,6-diacetoxy-11-[1-(4- nitrobenzoyloxy)ethyl]tetracyclo[6.4.1.0 $0^{2,7} .0^{9,12}$]trideca-2,4,6,10-tetraene-10-carboxylate, $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{10}$, has been established. In the crystal structure, weak intermolecular hydrogen bonds link molecules into a three-dimensional network.

Comment

Recently, we studied the ruthenium-catalysed [2 + 2]-cycloadditions between bicyclic alkenes and propargyl alcohols (Villeneuve et al., 2003). Two different diastereoisomers could be formed in the cycloadditions. When dihydro-1,4-methanonaphthalene-5,8-dioldiacetate, (I), was used as the bicyclic alkene component and ethyl (S)-4-hydroxy-2pentynoate, (II), was used as the alkyne component, two diastereoisomers, (III) and (IV), were obtained in a 91:9 ratio. These diastereoisomers were derivatized to the corresponding p-nitrobenzoyl esters and were separated by fractional recrystallization. The absolute stereochemistry of the major isomer, (V), was established by single-crystal X-ray diffraction analysis.

Received 7 June 2006
Accepted 9 June 2006

The molecular structure of (V) (Fig. 1) shows that the dihedral angle between the two aromatic rings ($\mathrm{C} 4-\mathrm{C} 9$ and C17-C22) is 55.61 (12) \AA. In the crystal structure, weak intermolecular hydrogen bonds link molecules into a threedimensional network, as detailed in Table 1.

Experimental

Addition of dihydro-1,4-methanonaphthalene-5,8-dioldiacetate, (I)
($90.1 \mathrm{mg}, 0.349 \mathrm{mmol}$), and ethyl (S)-4-hydroxy-2-pentynoate, (II)
（ $35.1 \mathrm{mg}, 0.246 \mathrm{mmol}$ ），to $\mathrm{Cp} * \mathrm{Ru}(\mathrm{COD}) \mathrm{Cl}(5.6 \mathrm{mg}, 0015 \mathrm{mmol})(\mathrm{Cp} *$ $=1,2,3,4,5$－pentamethylcylopentadienyl and COD $=1,5$－cycloocta－ diene）in tetrahydrofuran（ 0.6 ml ）at 358 K provided two diastereo－ isomers，（III）and（IV），in 74% yield（ $73.2 \mathrm{mg}, 0.183 \mathrm{mmol}$ ）in a $91: 9$ ratio．The mixture of diastereoisomers $(42.1 \mathrm{mg}, 0.105 \mathrm{mmol})$ ，was esterified with p－nitrobenzoyl chloride（ $38.4 \mathrm{mg}, 0.207 \mathrm{mmol}$ ）in pyridine（ 0.3 ml ）at 298 K ．Fractional recrystallization from diethyl ether／hexanes（1：1）provided the major diastereoisomer，（V） $(56.3 \mathrm{mg}, 0.102 \mathrm{mmol}, 98 \%)$ ．Suitable crystals were grown from a diethyl ether／hexanes solution of（V）．

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{10}$
$M_{r}=549.52$
Monoclinic，$P 2_{1}$ 。
$a=13.5862$（6）\AA
$b=7.3020$（3）A
$c=14.3462(7) \AA$
$\beta=114.709$（2）${ }^{\circ}$
$V=1292.93(10) \AA^{3}$

Data collection

Bruker－Nonius KappaCCD diffractometer
φ and ω scans with κ offsets
Absorption correction：multi－scan （SORTAV；Blessing，1995）

$$
T_{\min }=0.869, T_{\max }=0.962
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.412 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.40 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.125$
$S=1.03$
3175 reflections
366 parameters
H－atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0697 P)^{2}\right. \\
& +0.0871 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.30 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \\
& \text { SHELXTL/PC } \\
& \text { Extinction coefficient: } 0.037 \text { (5) }
\end{aligned}
$$

Table 1
Hydrogen－bond geometry（ $\left({ }^{\circ},{ }^{\circ}\right)$ ．

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O} 5^{\text {i }}$	0.99	2.38	3.189 （4）	139
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \cdots \mathrm{O} 5^{\text {ii }}$	0.98	2.58	3.513 （4）	159
$\mathrm{C} 25-\mathrm{H} 25 A \cdots \mathrm{O} 4^{\text {iii }}$	0.98	2.58	3.345 （6）	135

H atoms were placed in calculated positions，with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ ，and included in the refinement in the riding－ model approximation，with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$（methyl C）． In the absence of significant anomalous dispersion effects， 1942 Friedel pairs were merged．The absolute configuration was deter－ mined by reference to the unchanging chiral centre throughout the synthesis based on（ S ）－4－hydroxy－2－pentynoate，（II）．

Figure 1
The molecular structure of（V），showing 30% probability displacement ellipsoids．

Data collection：COLLECT（Nonius，2002）；cell refinement： DENZO－SMN（Otwinowski \＆Minor，1997）；data reduction： DENZO－SMN；program（s）used to solve structure：SIR92（Altomare et al．，1994）；program（s）used to refine structure：SHELXTL／PC （Sheldrick，2001）；molecular graphics：PLATON（Spek，2003）；soft－ ware used to prepare material for publication：SHELXTL／PC．

The authors acknowledge NSERC and the University of Toronto for funding．

References

Altomare，A．，Burla，M．C．，Camalli，G．，Cascarano，G．，Giacovazzo，C．， Gualiardi，A．\＆Polidori，G．（1994）．J．Appl．Cryst．27， 435.
Blessing，R．H．（1995）．Acta Cryst．A51，33－38．
Nonius（2002）．COLLECT．Nonius BV，Delft，The Netherlands．
Otwinowski，Z．\＆Minor，W．（1997）．Methods in Enzymology，Vol．276， Macromolecular Crystallography，Part A，edited by C．W．Carter Jr \＆R．M． Sweet，pp．307－326．New York：Academic Press．
Sheldrick，G．M．（2001）．SHELXTL／PC．Version 6．1 Windows NT Version． Bruker AXS Inc．，Madison，Wisconsin，USA．
Spek，A．L．（2003）．J．Appl．Cryst．36，7－13．
Villeneuve，K．，Jordan，R．W．\＆Tam，W．（2003）．Synlett，14，2123－2128．

